A+ 20°C

Speciation of inorganic carbon in aqueous solution

CO₂ dissolves in water:

(a) $CO_2(g) \rightarrow CO_2(aq)$ ($O_2(aq)$ is the same as $CO_2 \cdot H_2O$)

Dissolved CO₂ and water react to form carbonic acid: **(b)** CO₂(aq) + H₂O --> H₂CO3 K=10^{-2.5} to 10⁻³

The small value of K means that equilibrium is far to the left in Reaction b. Thus most $CO_2(aq)$ stays as $CO_2(aq)$ - most remains as the hydrated linear CO_2 molecule (see right) rather than becoming a planar triangular CO_3^{2-} ion complexed with two H⁺s. Most geochemists simplify by lumping the hydrated CO_2 and the true H_2CO_3 as $H_2CO_3^*$:

$$[H_2CO_3^*] = [CO_2(aq)] + [H_2CO_3]$$

Thus we usually write a third equation that combines (a) and (b):

(c)
$$CO_2(g) + H_2O --> H_2CO_3^*$$
 $K_{CO2} = \frac{aH_2CO_3^*}{PCO_2^*} = 10^{-1.5}$

This carbonic acid can dissociate to give bicarbonate:

(d)
$$H_2CO_3^* -> H^+ + HCO_3^ K_1 = \frac{aH^+ \cdot aHCO_3^-}{aH_2CO_3^*} = 10^{-6.4}$$

And bicarbonate can dissociate to give carbonate:

(e)
$$HCO_3^- -> H^+ + CO_3^{2-}$$
 $K_2 = \frac{aH^+ \cdot aCO_3^{2-}}{aHCO_3^{-}} = 10^{-10.4}$

The presence of H^+ as a product in d and e means that both reactions proceed to the right much more at higher pH.

A Graphic View of Carbonate Equilibria:

LBR 815 CO2(g)toCO3(aq) 04 3/29/1999; rev 1/2008