Variation in the dissociation constants of H₂CO₃ and HCO₃⁻ with temperature and salinity

As previous pages in this series have discussed, the behavior of dissolved inorganic carbon (CO_2 , HCO_3^- , and CO_3^{2-}) hinges on dissociation of $H_2CO_3^*$ and HCO_3^- . The equilibrium "constants" for the dissociation of $H_2CO_3^*$ to HCO_3^- and H^+ (conventionally designated K_1) and of HCO_3^- to H^+ and CO_3^{2-} (K_2) vary with

temperature and salinity. The plots below illustrate the extent of that variation. The values shown were calculated from equations reported by Millero, F.J., et al., 2006, Dissociation constrants of carbonic acid in seawater as a function of salinity and temperature: *Marine Chemistry*, v. 100, p. 80-94.

 $H_2CO_3^*$ is the sum of true H_2CO_3 (C in three-fold coordination with one O²⁻ and two OH-) and $CO_{2(aq)}$ (C in two-fold coordination and hydrated with one H_2O).