## Why oxidation commonly leads to acidification

- 1. Oxidation removes electrons from atoms and thus increases the charge on those atoms.
- 2. Oxidation removes electrons from atoms and thus lessens the size of those atoms.

Combining Items 1 and 2:

- 3. Oxidation increases the ionic potential of atoms or ions (i.e., it increases the density of their positive charge).
- 4. Cations of greater ionic potential more effectively attract negatively-charged ligand atoms.
- 5. O<sup>2-</sup> is by far the most abundant negativelycharged ligand atom, and it's produced when oxygen (as O<sub>2</sub>, OH<sup>0</sup>, or H<sub>2</sub>O<sub>2</sub>) serves as an oxidizing electron acceptor.
- 6. Maximally oxidized cations thus attract O<sup>2</sup>-, like the O<sup>2</sup>- of H<sub>2</sub>O or OH<sup>-</sup>.

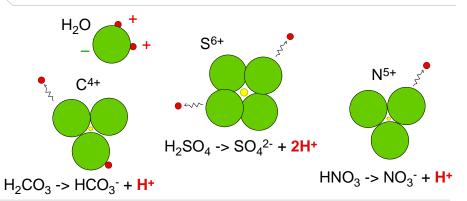
But conversely

- 7. The positively charge of maximally oxidized cations repels the H<sup>+</sup> of H<sub>2</sub>O or OH<sup>-</sup>.
  - 8. Release of H+ (•) is acidity.

## Examples:

| Carbon                                                                                                      | Sulfur                                     | Nitrogen                                           |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| C <sup>4-</sup> -> C <sup>4+</sup> (oxidation of methane)                                                   | $S^{2-} -> S^{6+}$ (oxidation of sulfides) | $N^{3-} \rightarrow N^{5+}$ (oxidation of ammonia) |
| C <sup>0</sup> -> C <sup>4+</sup> (e.g., biological respiration, or oxidation of plant matter or petroleum) | $S^{4+} -> S^{6+}$ (oxidation of $SO_2$ )  | $N^{4+} -> N^{5+}$ (oxidation of $NO_2$ )          |

Radii: 
$$C^{4-} = 2.60 \text{Å}$$
  $S^{2-} = 1.84 \text{Å}$   $N^{3-} = 1.71 \text{Å}$   $C^0 = 0.77 \text{Å}$   $S^{4+} = 0.37 \text{Å}$   $S^{6+} = 0.29 \text{Å}$   $N^{5+} = 0.11 \text{Å}$ 


Ionic potential or density of charge = 
$$\frac{\text{charge of ion}}{\text{radius of ion}} = \frac{z}{r}$$

$$\frac{z}{r} = \frac{4}{0.15} = 27$$

$$\frac{z}{r} = \frac{6}{0.29} = 21$$

$$\frac{z}{r} = \frac{5}{0.11} = 45$$

$$CH_4 + 2O_2 -> H_2CO_3 + H_2O$$
  $NH_3 + 2O_2 -> HNO_3 + H_2O$   $H_2S + 2O_2 -> H_2SO_4$   $SO_2 + 2OH^0 -> H_2SO_4$ 

